Equivalence of Uniform Key Agreement and Composition Insecurity

Chongwon Cho Chen-Kuei Lee Rafail Ostrovsky

UCLA
Plan

- Main Question:
 - hardness amplification via composition
- Previous Works
- Our main result
- Conclusions
Types of Compositions

- **Parallel Composition**
 Let F and G be functions with the same domain and range. Parallel composition of F and G is defined as $P(\cdot)$:

 $$P(\cdot) = F(\cdot) \text{ XOR } G(\cdot)$$
Types of Compositions

- **Parallel Composition**
 Let F and G be functions with the same domain and range. Parallel composition of F and G is defined as $P(\cdot)$:

 $$P(\cdot) = F(\cdot) \text{ XOR } G(\cdot)$$

- Instead of \mathbb{Z}_2 can define over other groups.
Types of Compositions

- **Parallel Composition**
 Let F and G be functions with the same domain and range. Parallel composition of F and G is defined as P(·):
 \[P(\cdot) = F(\cdot) \text{ XOR } G(\cdot) \]

- Instead of \(Z_2 \) can define over other groups.

- **Sequential Composition**
 Let F and G be functions with the same domain and range. Sequential composition of F and G is defined as S(·):
 \[S(\cdot) = G(F(\cdot)) \]
Security Amplification via Composition

- Does **composition** of Non-adaptively secure PRF (unconditionally) implies adaptive security?
 - In an information-theoretic setting?
 - In a computational setting?
 - If not, under what assumptions?
Security Amplification via Composition

- Does composition of Non-adaptively secure PRF (unconditionally) implies adaptive security?
 - In an information-theoretic setting?
 - In a computational setting?
 - If not, under what assumptions?

- A lot is known already, let's review...
 [LR86], [Vaud03], [MP 04], [Piet05], [Piet06]
Previous Works

- **Information Theoretic Setting**
 - Vaudenay [Vaud 03] showed the sequential composition of k non-adaptively ϵ-secure Permutation implies $2^{k-1}\epsilon^k$ adaptive security.
Previous Works

- **Information Theoretic Setting**
 - **Vaudenay [Vaud 03]** showed the sequential composition of k non-adaptively ε-secure Permutation implies $2^{k-1}\varepsilon^k$ adaptive security.
 - **Luby and Rackoff [LR86]** showed the parallel composition of k ε-secure functions implies $2^{k-1}\varepsilon^k$ adaptive security.
Previous Works (Cont)

- Information Theoretic Setting
- **Maurer and Pietrzak [MP 04]** showed for permutations that composition of 2 ε-secure non-adaptive permutations implies $2\varepsilon(1 + \ln(\varepsilon^{-1}))$ secure adaptive permutation.
Previous Works (Cont)

- **Information Theoretic Setting**
 - **Maurer and Pietrzak [MP 04]** showed for permutations that composition of 2 ε-secure non-adaptive permutations implies $2\varepsilon(1+\ln(\varepsilon^{-1}))$ secure adaptive permutation.

- **Computational Setting**
 - **Pietrzak [Piet05]** showed:
 - DDH \Rightarrow composition does not help, i.e.:
 - If *DDH* assumption holds, then the composition of non-adaptively secure functions is not adaptively secure (i.e. 3 adaptive-query breakable)!
○ Pietrzak [Piet06]:
 - If sequential composition does not help (for PRF) \(\Rightarrow \) there exists Key-agreement
 - If the *sequential* composition of \(k \)-adaptively secure functions is not \(k+1 \) adaptively secure, then there exists a \((2k-1)\)-pass key agreement.

 - In fact, the above construction of key agreement implies uniform transcript key agreement.
 - If sequential composition does not help \(\Rightarrow \) uniform-transcript Key-agreement
Summary of [Piet05] and [Piet06]:

DDH

Parallel composition does not help

Sequential composition does not help
Summary of [Piet05] and [Piet06]:

- DDH

 - Parallel composition does not help
 - Sequential composition does not help
Summary of [Piet05] and [Piet06]:

- DDH
- Parallel composition does not help
- Uniform transcript key agreement
- Sequential composition does not help
What else do we know?

DDH

... Dense trapdoor permutations

Parallel composition does not help

Sequential composition does not help

Uniform transcript key agreement
Wishful thinking…

DDH

…

Dense trapdoor permutations

Uniform transcript key agreement

Parallel composition does not help

Sequential composition does not help
Wishful thinking…

DDH

Dense trapdoor permutations

Uniform transcript
key agreement

Parallel composition
does not help

Sequential composition
does not help
Wishful thinking...

Uniform transcript

THIS IS EXACTLY WHAT WE DO

Sequential composition does not help

Parallel composition does not help

Uniform transcript

key agreement

Sequential composition does not help
THIS IS EXACTLY WHAT WE DO

Parallel composition does not help

Sequential composition does not help

Uniform transcript
key agreement
Wishful thinking…

THIS IS EXACTLY WHAT WE DO

Public Key World

Sequential composition does not help

Uniform transcript

Parallel composition does not help

key agreement

Sequential composition does not help

Private Key World
Wishful thinking...

Uniform transcript

THIS IS EXACTLY WHAT WE DO

Sequential composition does not help

Parallel composition does not help

Uniform transcript

key agreement

Private Key World

Public Key World

Composition help
Our Result

- **Main Thm:** Both sequential and parallel composition of two pseudo-random functions does not imply adaptive-security if and only if a uniform-transcript key agreement exists.
Conclusion and Open Questions

- Composition Insecurity \iff Uniform Transcript Key Agreement

- Round Complexity of UTKA is Linearly Proportional to the Adaptive Security of Compositions.

- Open: Tighter Relation between the security of component functions and the security of their compositions.